This paper proposes:

- A novel frequent pattern tree structure: **FP-tree**
- An efficient FP-tree-based mining method: **FP-growth**

This approach is very efficient due to:

- Compression of a large database into a smaller data structure
- Pattern fragment growth mining method
- Partitioning-based divide-and-conquer search method

FP-tree: Design and Construction

- To ensure that the tree structure is compact, only frequent length-1 items will have nodes in the tree
- More frequently occurring nodes will have better chances of sharing nodes than the others
An FP-tree is a tree structure which consists of:

- One root labeled as "null"
- A set of item prefix sub-trees with each node formed by three fields: item-name, count, node-link
- A frequent-item header table with two fields for each entry: item-name, head of node-link

FP-tree construction algorithm

- **Input:** a transaction database DB and a minimum support threshold \(\varepsilon \)
- **Output:** Its frequent pattern tree, FP-tree
- **Method:** The FP-tree is constructed in the following steps:
1. Scan DB once:
- Collect the set of frequent items F and their supports
- Sort F in support descending order as L, the list of frequent items

2. Create a root of an FP-tree, T, and label it as "null"
- For each transaction Trans in DB do the following:
 - select and sort the frequent items in Trans according to the order of L
 - let the sorted frequent item list in Trans be [p| P], where p is the first element and P is the remaining list. Call insert_tree([p| P], T)

Note: insert_tree([p| P], T) is performed as follows:
- IF T has a child N such that N.item_name=p.item_name, then increment N's count by 1
- ELSE create a new node N, and let its count be linked to T, and its node-link be linked to the nodes with the same item_name via the node-link structure
- IF P is nonempty, call insert_tree(P,N) recursively

Analysis
- Two scans of the DB are necessary: the first collects the set of frequent items and the second constructs the FP-tree.
- The cost of inserting a transaction Trans into the FP-tree is O(| Trans|), where | Trans| is the number of frequent items in Trans.
FP-tree contains the complete information for frequent pattern mining.

- The size of the FP-tree is bounded by the size of the database, but due to frequent items sharing, the size of the tree is usually much smaller than its original database.
- High compaction is achieved by placing more frequently items closer to the root (being thus more likely to be shared).

FP-growth: the FP-tree-based mining method

- Starts from a frequent length-1 pattern
- Examines only its conditional pattern base
- Constructs its FP-tree
- Performs mining recursively on the tree

FP-growth algorithm

- **Input:** FP-tree constructed using DB and a minimum support threshold \(\varepsilon \)
- **Output:** The complete set of frequent patterns
- **Method:** Call FP-growth (FP-tree, null)

Procedure FP-growth (Tree, \(\alpha \))

- IF Tree contains a single path P
 - THEN for each combination \(\beta \) of the nodes in the path P DO generate pattern \(\beta \cup \alpha \) with support = minimum support of nodes in \(\beta \)
 - ELSE for each \(a_i \) in the header of Tree DO
 - generate pattern \(\beta = a_i \cup \alpha \) with \(a_i \).support;
 - construct \(\beta \)'s conditional pattern base and FP-tree Tree\(\beta \)
 - IF Tree\(\beta \) <> void THEN Call FP-growth(Tree\(\beta \), \(\beta \))
Analysis of the FP-growth algorithm

- Finds the complete set of frequent itemsets
- Efficient because:
 - it works on a reduced set of pattern bases
 - it performs mining operations less costly than generation and test:
 - prefix count adjustment
 - counting
 - pattern fragment concatenation

Search technique: partitioning-based divide-and-conquer

- Used instead of the Apriori-like bottom-up generation of frequent itemsets combinations
- Reduces the size of the conditional pattern base generated at the subsequent level of search and of its corresponding FP-tree

Performance comparison with other algorithms

- Transforms the problem of finding long frequent patterns to looking for shorter ones and then concatenating the suffix.
- Employs the least frequent items as suffix, which offers a good selectivity.
- TreeProjection is the supporting algorithm of another novel tree structure: lexicographic tree
- Comparative analysis of the FP-growth with Apriori and TreeProjection algorithms show that FP-growth outperforms both of them
Improvements: how to design a disk-resident FP-tree

- Cluster FP-tree nodes by path and by item prefix sub-tree
- B+-tree for FP-tree not fitting into main memory
- Group access mode mining to reduce the I/O cost
- Release space of the conditional pattern base or conditional FP-tree after usage
- Remove the node-links of the FP-tree

Performance improvements

- Materialization of an FP-tree
- Incremental updates of an FP-tree
- FP-tree mining with item constraints
- FP-tree mining of other frequent patterns

Advantages of the FP-growth mining method:

- Efficient and scalable for both long and short frequent patterns; the running memory requirements of FP-growth increase linearly when the support threshold goes down
- An order of magnitude faster than the Apriori algorithm
- Faster than recently reported new frequent pattern mining methods

Drawbacks:

- The tree does not achieve maximal compactness all the time.
- For the databases with mostly short transactions, the reduction ratio of the tree in respect to the database is not very high.
- The FP-tree does not always fit into the main memory.
Conclusions

- FP-growth method has satisfactory performance when tested in large industrial databases
- It is open to a lot of research issues
- Due to compression, sometimes large databases (order of gigabytes) containing many long patterns may generate FP-trees which fit in main memory